blackout/src/core.rs

610 lines
15 KiB
Rust

use std::{
cmp::{max, min},
f32::consts::PI,
fmt::Display,
sync::RwLock,
};
use avian2d::{
parry::{
math::Isometry,
query::{closest_points, distance, ClosestPoints},
},
prelude::*,
};
use bevy::{
app::PluginGroupBuilder,
math::{CompassOctant, CompassQuadrant, FloatOrd},
prelude::*,
};
use once_cell::sync::Lazy;
use rand::prelude::*;
use serde::{Deserialize, Serialize};
fn relative_desc(rot: &Rot2) -> String {
let mode = RELATIVE_DIRECTION_MODE.read().unwrap();
match rot.as_radians() {
v if v <= PI / 12. && v > -PI / 12. => "ahead",
v if v <= PI / 4. && v > PI / 12. => {
if *mode == RelativeDirectionMode::ClockFacing {
"11:00"
} else {
"ahead and left"
}
}
v if v <= 3. * PI / 8. && v > PI / 4. => {
if *mode == RelativeDirectionMode::ClockFacing {
"10:00"
} else {
"left and ahead"
}
}
v if v <= 5. * PI / 8. && v > 3. * PI / 8. => "left",
v if v <= 3. * PI / 4. && v > 5. * PI / 8. => {
if *mode == RelativeDirectionMode::ClockFacing {
"8:00"
} else {
"left and behind"
}
}
v if v <= 11. * PI / 12. && v > 3. * PI / 4. => {
if *mode == RelativeDirectionMode::ClockFacing {
"7:00"
} else {
"behind and left"
}
}
v if v <= PI && v > 11. * PI / 12. || v > -PI && v <= -11. * PI / 12. => "behind",
v if v <= -3. * PI / 4. && v > -11. * PI / 12. => {
if *mode == RelativeDirectionMode::ClockFacing {
"5:00"
} else {
"behind and right"
}
}
v if v <= -5. * PI / 8. && v > -3. * PI / 4. => {
if *mode == RelativeDirectionMode::ClockFacing {
"4:00"
} else {
"right and behind"
}
}
v if v <= -3. * PI / 8. && v > -5. * PI / 8. => "right",
v if v <= -PI / 4. && v > -3. * PI / 8. => {
if *mode == RelativeDirectionMode::ClockFacing {
"2:00"
} else {
"right and ahead"
}
}
v if v <= -PI / 12. && v > -PI / 4. => {
if *mode == RelativeDirectionMode::ClockFacing {
"1:00"
} else {
"ahead and right"
}
}
_ => "ahead",
}
.into()
}
#[derive(Clone, Copy, Debug, Eq, PartialEq, Deref, DerefMut, Reflect)]
pub struct MovementDirection(CompassOctant);
impl From<Rot2> for MovementDirection {
fn from(rot: Rot2) -> Self {
use CompassOctant::*;
MovementDirection(match rot.as_radians() {
h if h > -PI / 8. && h <= PI / 8. => East,
h if h > PI / 8. && h <= 3. * PI / 8. => NorthEast,
h if h > 3. * PI / 8. && h <= 5. * PI / 8. => North,
h if h > 5. * PI / 8. && h <= 7. * PI / 8. => NorthWest,
h if h > 7. * PI / 8. || h <= -7. * PI / 8. => West,
h if h > -7. * PI / 8. && h <= -5. * PI / 8. => SouthWest,
h if h > -5. * PI / 8. && h <= -3. * PI / 8. => South,
h if h > -3. * PI / 8. && h <= -PI / 8. => SouthEast,
_ => West,
})
}
}
// Converting from strings into directions doesn't make sense.
#[allow(clippy::from_over_into)]
impl Into<String> for MovementDirection {
fn into(self) -> String {
use CompassOctant::*;
match self.0 {
North => "north",
NorthEast => "northeast",
East => "east",
SouthEast => "southeast",
South => "south",
SouthWest => "southwest",
West => "west",
NorthWest => "northwest",
}
.into()
}
}
impl Display for MovementDirection {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let str: String = (*self).into();
write!(f, "{}", str)
}
}
#[derive(Component, Clone, Copy, Debug, Eq, PartialEq, Deref, DerefMut, Reflect)]
#[reflect(Component)]
pub struct CardinalDirection(pub CompassQuadrant);
impl Default for CardinalDirection {
fn default() -> Self {
Self(CompassQuadrant::East)
}
}
impl From<Rot2> for CardinalDirection {
fn from(rot: Rot2) -> Self {
use CompassQuadrant::*;
CardinalDirection(match rot.as_radians() {
h if h > -PI / 4. && h <= PI / 4. => East,
h if h > PI / 4. && h <= 3. * PI / 4. => North,
h if h > 3. * PI / 4. || h <= -3. * PI / 4. => West,
_ => South,
})
}
}
impl From<&CardinalDirection> for Rot2 {
fn from(direction: &CardinalDirection) -> Self {
use CompassQuadrant::*;
match direction.0 {
North => Rot2::radians(PI / 2.),
East => Rot2::radians(0.),
South => Rot2::radians(-PI / 2.),
West => Rot2::radians(PI),
}
}
}
// Converting from strings into directions doesn't make sense.
#[allow(clippy::from_over_into)]
impl Into<String> for CardinalDirection {
fn into(self) -> String {
use CompassQuadrant::*;
match self.0 {
North => "north".to_string(),
East => "east".to_string(),
South => "south".to_string(),
West => "west".to_string(),
}
}
}
impl Display for CardinalDirection {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let str: String = (*self).into();
write!(f, "{}", str)
}
}
#[derive(Clone, Copy, Debug, Deserialize, Eq, PartialEq, Serialize)]
pub enum RelativeDirectionMode {
ClockFacing,
Directional,
}
static RELATIVE_DIRECTION_MODE: Lazy<RwLock<RelativeDirectionMode>> = Lazy::new(|| {
let v = RelativeDirectionMode::Directional;
RwLock::new(v)
});
static PHYSICS_SCALE: Lazy<RwLock<f32>> = Lazy::new(|| RwLock::new(1.));
pub trait PointLike {
fn x(&self) -> f32;
fn y(&self) -> f32;
fn x_i32(&self) -> i32 {
self.x().trunc() as i32
}
fn y_i32(&self) -> i32 {
self.y().trunc() as i32
}
fn x_usize(&self) -> usize {
self.x().trunc() as usize
}
fn y_usize(&self) -> usize {
self.y().trunc() as usize
}
fn f32(&self) -> (f32, f32) {
(self.x(), self.y())
}
fn i32(&self) -> (i32, i32) {
(self.x_i32(), self.y_i32())
}
fn trunc(&self) -> (f32, f32) {
(self.x().trunc(), self.y().trunc())
}
fn to_index(&self, width: usize) -> usize {
(self.y_usize() * width) + self.x_usize()
}
fn distance_squared(&self, other: &dyn PointLike) -> f32 {
let x1 = FloatOrd(self.x());
let y1 = FloatOrd(self.y());
let x2 = FloatOrd(other.x());
let y2 = FloatOrd(other.y());
let dx = max(x1, x2).0 - min(x1, x2).0;
let dy = max(y1, y2).0 - min(y1, y2).0;
(dx * dx) + (dy * dy)
}
fn distance(&self, other: &dyn PointLike) -> f32 {
self.distance_squared(other).sqrt()
}
fn bearing(&self, other: &dyn PointLike) -> Rot2 {
let y = other.y() - self.y();
let x = other.x() - self.x();
Rot2::radians(y.atan2(x))
}
fn direction(&self, other: &dyn PointLike) -> MovementDirection {
self.bearing(other).into()
}
fn direction_and_distance(&self, other: &dyn PointLike, yaw: Option<Rot2>) -> String {
let mut tokens: Vec<String> = vec![];
let distance = self.distance(other).round() as i32;
if distance > 0 {
let tile_or_tiles = if distance == 1 { "tile" } else { "tiles" };
let direction: String = if let Some(yaw) = yaw {
let yaw = yaw.as_radians();
let bearing = self.bearing(other).as_radians();
let rot = Rot2::radians(bearing - yaw);
relative_desc(&rot)
} else {
self.direction(other).into()
};
tokens.push(format!("{direction} {distance} {tile_or_tiles}"));
}
tokens.join(" ")
}
}
impl PointLike for Transform {
fn x(&self) -> f32 {
self.translation.x
}
fn y(&self) -> f32 {
self.translation.y
}
}
impl PointLike for &Transform {
fn x(&self) -> f32 {
self.translation.x
}
fn y(&self) -> f32 {
self.translation.y
}
}
impl PointLike for GlobalTransform {
fn x(&self) -> f32 {
self.translation().x
}
fn y(&self) -> f32 {
self.translation().y
}
}
impl PointLike for &GlobalTransform {
fn x(&self) -> f32 {
self.translation().x
}
fn y(&self) -> f32 {
self.translation().y
}
}
impl PointLike for Vec2 {
fn x(&self) -> f32 {
self.x
}
fn y(&self) -> f32 {
self.y
}
}
impl PointLike for IVec2 {
fn x(&self) -> f32 {
self.x as f32
}
fn y(&self) -> f32 {
self.y as f32
}
}
impl PointLike for (i32, i32) {
fn x(&self) -> f32 {
self.0 as f32
}
fn y(&self) -> f32 {
self.1 as f32
}
}
impl PointLike for (f32, f32) {
fn x(&self) -> f32 {
self.0
}
fn y(&self) -> f32 {
self.1
}
}
impl PointLike for (usize, usize) {
fn x(&self) -> f32 {
self.0 as f32
}
fn y(&self) -> f32 {
self.1 as f32
}
}
impl PointLike for here_be_dragons::geometry::Point {
fn x(&self) -> f32 {
self.x as f32
}
fn y(&self) -> f32 {
self.y as f32
}
}
pub trait TransformExt {
fn yaw(&self) -> Rot2;
}
impl TransformExt for Transform {
fn yaw(&self) -> Rot2 {
let forward = self.right();
Rot2::radians(forward.y.atan2(forward.x))
}
}
pub trait GlobalTransformExt {
fn yaw(&self) -> Rot2;
fn closest_points(
&self,
collider: &Collider,
other: &GlobalTransform,
other_collider: &Collider,
) -> ClosestPoints;
fn collider_direction_and_distance(
&self,
collider: &Collider,
other: &GlobalTransform,
other_collider: &Collider,
) -> String;
}
impl GlobalTransformExt for GlobalTransform {
fn yaw(&self) -> Rot2 {
let forward = self.right();
Rot2::radians(forward.y.atan2(forward.x))
}
fn closest_points(
&self,
collider: &Collider,
other: &GlobalTransform,
other_collider: &Collider,
) -> ClosestPoints {
let scale = PHYSICS_SCALE.read().unwrap();
let pos1 = Isometry::new(
(self.translation() / *scale).xy().into(),
self.yaw().as_radians(),
);
let pos2 = Isometry::new(
(other.translation() / *scale).xy().into(),
other.yaw().as_radians(),
);
closest_points(
&pos1,
collider.shape().as_ref(),
&pos2,
other_collider.shape().as_ref(),
f32::MAX,
)
.unwrap()
}
fn collider_direction_and_distance(
&self,
collider: &Collider,
other: &GlobalTransform,
other_collider: &Collider,
) -> String {
let scale = PHYSICS_SCALE.read().unwrap();
let pos1 = Isometry::new(
(self.translation() / *scale).xy().into(),
self.yaw().as_radians(),
);
let pos2 = Isometry::new(
(other.translation() / *scale).xy().into(),
other.yaw().as_radians(),
);
let closest = self.closest_points(collider, other, other_collider);
let distance = distance(
&pos1,
collider.shape().as_ref(),
&pos2,
other_collider.shape().as_ref(),
)
.unwrap() as u32;
let tile_or_tiles = if distance == 1 { "tile" } else { "tiles" };
if distance > 0 {
if let ClosestPoints::WithinMargin(p1, p2) = closest {
let p1 = (p1.x, p1.y);
let p2 = (p2.x, p2.y);
let bearing = p1.bearing(&p2).as_radians();
let yaw = self.yaw().as_radians();
let rot = Rot2::radians(bearing - yaw);
let direction = relative_desc(&rot);
format!("{direction} {distance} {tile_or_tiles}")
} else {
format!("{} {}", distance, tile_or_tiles)
}
} else {
format!("{} {}", distance, tile_or_tiles)
}
}
}
#[derive(Component, Clone, Copy, Debug, Default, Reflect)]
#[reflect(Component)]
pub struct Player;
#[derive(Clone, Copy, Debug)]
pub struct Pool<T> {
pub value: T,
pub max: T,
}
impl<T> Default for Pool<T>
where
T: Default,
{
fn default() -> Self {
Self {
value: Default::default(),
max: Default::default(),
}
}
}
#[derive(Clone, Debug)]
pub struct RandomTable<T>(Vec<T>)
where
T: Clone;
impl<T> RandomTable<T>
where
T: Clone,
{
pub fn add(&mut self, value: T, weight: i32) -> &mut Self {
if weight > 0 {
for _ in 0..weight {
self.0.push(value.clone());
}
}
self
}
}
impl<T> Default for RandomTable<T>
where
T: Clone,
{
fn default() -> Self {
Self(vec![])
}
}
impl<T> Iterator for RandomTable<T>
where
T: Clone,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
let mut rng = thread_rng();
self.0.shuffle(&mut rng);
self.0.first().cloned()
}
}
fn setup(core_config: Res<CoreConfig>) {
let mut scale = PHYSICS_SCALE.write().unwrap();
*scale = core_config.pixels_per_unit as f32;
let mut mode = RELATIVE_DIRECTION_MODE.write().unwrap();
*mode = core_config.relative_direction_mode;
}
#[derive(Resource, Clone, Copy, Debug)]
pub struct CoreConfig {
pub relative_direction_mode: RelativeDirectionMode,
pub pixels_per_unit: u8,
}
fn sync_config(config: Res<CoreConfig>) {
if config.is_changed() {
let mut mode = RELATIVE_DIRECTION_MODE.write().unwrap();
*mode = config.relative_direction_mode;
}
}
pub struct CorePlugin {
pub relative_direction_mode: RelativeDirectionMode,
pub pixels_per_unit: u8,
}
impl Default for CorePlugin {
fn default() -> Self {
Self {
relative_direction_mode: RelativeDirectionMode::Directional,
pixels_per_unit: 1,
}
}
}
impl Plugin for CorePlugin {
fn build(&self, app: &mut App) {
let config = CoreConfig {
relative_direction_mode: self.relative_direction_mode,
pixels_per_unit: self.pixels_per_unit,
};
app.insert_resource(config)
.register_type::<CardinalDirection>()
.add_plugins(PhysicsPlugins::default().with_length_unit(config.pixels_per_unit as f32))
.add_systems(Startup, setup)
.add_systems(Update, sync_config);
}
}
pub struct CorePlugins;
impl PluginGroup for CorePlugins {
fn build(self) -> PluginGroupBuilder {
PluginGroupBuilder::start::<Self>()
.add(crate::bevy_tts::TtsPlugin)
.add(crate::bevy_synthizer::SynthizerPlugin::default())
.add(crate::navigation::NavigationPlugin::default())
.add(CorePlugin::default())
}
}